

How to Monitor AUX Channel Communication of DisplayPort Interfaces

DisplayPort Interface

AUX Channel Topology

DP Source Device

- Master of the AUX Channel (called AUX CH Requester).
- Must initiate a *Request Transaction.*

DP Sink Device

- AUX Channel slave (AUX CH Replier).
- Responds with a *Reply Transaction.*

AUX Channel

- Single differential pair.
- Half-duplex bidirectional operation.
- 1 Mbps using Manchester-II coding.

Use of AUX Channel

AUX Link Services

- Link Capability Read
- Link Configuration (training)
- Link Status Read

AUX Device Services

- EDID Read
- MCCS (Monitor Command and Control Set) support
- Sink Event Notification

Sideband Messaging

- Send & Receive Messages from Remote DP Nodes
- Report MST Status Changes and Errors

AUX Channel Protocol Example 1

Read from Sink DPCD

Source		Sink	
Req RD 1 byte from 0x00218	90 02 19 00	AUX ACK (1 byte)	00 00

Source: Read one byte of data from DPCD 0x00218

Sink: OK,

```
TEST_REQUEST (Test requested by the Sink device):

0x00218 := 0x00

TEST_LINK_TRAINING = 0

TEST_VIDEO_PATTERN = 0

TEST_EDID_READ = 0

PHY_TEST_PATTERN = 0

FAUX_TEST_PATTERN = 0
```

Please refer to: DP v1.2a: 2.9.3.1 Address Mapping for Link Configuration/Management

AUX Channel Protocol Example 2

Write to Sink DPCD

Source		Sink	
Req WR 5 bytes to 0x00102	80 01 02 04 22 38 38 38 38	ACK	00

```
Source: Write 5 bytes of data to DPCD 0x00102

TRAINING_PATTERN_SET (0x00102 := 0x22)

TRAINING_PATTERN_SET = 2 (Pattern 2)

RECOVERED_CLOCK_OUT_EN = 0

SCRAMBLING_DISABLE = 1

SYMBOL_ERROR_COUNT_SEL = 0 (Disparity and Illegal Symbol)

TRAINING_LANE0_SET (Link Training Control, Lane 0)(0x00103 := 0x38)

VOLTAGE_SWING_SET = level 0

MAX_SWING_REACHED = 0

PRE_EMPHASIS_SET = level 3

MAX_PRE-EMPHASIS_REACHED = 1 etc. ...
```

Sink: OK

Please refer to: DP v1.2a 2.9.3.1 Address Mapping for Link Configuration/Management

AUX Channel Protocol Example 3

Sideband Message - step 1 (Request)

Source		Sink	
Req WR 5 bytes to 0x01000	80 10 00 04 10 02 cb 01 d5	ACK	00

DOWN_REQ - REQ: LINK_ADDRESS -- Sideband message header --Link_Count_Total = 1 Link_Count_Remaining = 0 Broadcast_Message = 0 Path_Message = 0 MSG_Body_Length = 2 Start_Of_MT = 1 End_Of_MT = 1 Message_Sequence_No = 0

Please refer to: DP v1.2a 2.9.3.1 Address Mapping for Link Configuration/Management

AUX Channel Protocol Example 3

Sideband Message - step 2 (Enquire Reply)

Source		Sink	
Req RD 1 bytes from 0x02003	90 20 03 00	AUX_ACK - 1 bytes	00 10

```
DEVICE_SERVICE_IRQ_VECTOR_ESI0 [CLR] [1.2]

0x02003 := 0x10

(Reserved) REMOTE_CONTOL_COMMAND_PENDING = 0

AUTOMATED_TEST_REQUEST = 0

CP_IRQ = 0

MCCS_IRQ = 0

DOWN_REP_MSG_RDY = 1

UP_REQ_MSG_RDY = 0

SINK_SPECIFIC_IRQ = 0
```

Please refer to: DP v1.2a 2.9.3.1 Address Mapping for Link Configuration/Management

AUX Channel Protocol Example 3

Sideband Message - step 3 (Reply)

Source			Sink
Req RD 16 bytes from 0x01410	90 14 10 Of	AUX_ACK - 16 bytes	00 22 93 1a 45 03 90 c0 4b 00 00 00 00 00 00 00 00

- DOWN_REP Message Transaction fragment
- -- Sideband message header --Link_Count_Total = 1 Link_Count_Remaining = 0 Broadcast_Message = 0 Path_Message = 0 MSG_Body_Length = 21 Start_Of_MT = 1 End_Of_MT = 0 Message_Sequence_No = 0

Etc. ...

Please refer to: DP v1.2a 2.9.3.1 Address Mapping for Link Configuration/Management

AUX Monitor

DPR-120 Embedded AUX Monitor

Unigraf AUX Monitor GUI

Case: Interoperability Testing

Case: Interoperability Testing

Case: Link Compliance Testing

Case: MST Interoperability Testing

Stream Allocation Monitor

Both tools in DPR-120 Debug and Test Controller GUI

Case: MST Interoperability Testing

Case: MST Interoperability Testing

DisplayPort MST Interoperability Test Procedure

Please refer to: VESA DisplayPort® Multi-Stream Transport Certification Test Procedure; Revision D

DisplayPort MST Interoperability Test Procedure

Please refer to: VESA DisplayPort® Multi-Stream Transport Certification Test Procedure; Revision D

Summary

- DPA-400 Advantages:
 - Can be used between any Source and Sink
 - Needed between MST Branch and Sink
- DPR-120 Built-in AUX Advantages:
 - Link CTS tool and AUX Monitor in the same GUI
 - Reduces the # of connectors in the stream path

DPR-120

Thank You!

Please visit <u>www.unigraf.fi</u> for more information.